الرياضيات الأساسية الأمثلة

خطوة 1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 1.2
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
اطرح من .
خطوة 3.2.1.2
أضف و.
خطوة 3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
اقسِم كل حد في على .
خطوة 3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.2.1.2
اقسِم على .
خطوة 3.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.3.1
اقسِم على .
خطوة 4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أضف و.
خطوة 4.2.2
اطرح من كلا المتعادلين.
خطوة 4.2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
اقسِم كل حد في على .
خطوة 4.2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.3.2.1.2
اقسِم على .
خطوة 4.2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.3.1
انقُل السالب أمام الكسر.
خطوة 5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: